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SCOPE OF REPORT

This report covers algorithm development and theoretical workperformed during the

months of July and August. -

ALGORITHM DEVELOPMENT

WORK TO PRESENT. During July and August we continued our investigation of

correlation methods for coding images and began to investigate wavelet transforms. The

work included six areas of interest:

1) Lossless compression 1

2) Alternative tile classification schemes-

3) Elimination of compression artifacts)

4) Effects of image size on fidelity and compression

5) Image preprocessingJ A')

6) Methods to improve tiling fidelity, \
C-

While the compression ratios attainable with lossless compression schemes are far lower

than those obtained with lossy schemes, the utility of lossless schemes is higher for many

applications. We investigated briefly the idea of compressing the difference between an

original image and a highly compressed version of the image. The results were

encouraging, though not spectacular. Compression of our standard t st images ranged

from 1.3 to 1.9. We plan to investigate other lossy techniques, s cifically Fourier

transforms, to obtain more comparisons. .. "

The second area of interest, using alternative classification schemes for tiles, is somewhat

technical. The enclosed preprint has further details. The domain tiles used to encode an

image are classified in order to speed the search needed to find a 'good' domain tile. Using

a classification scheme generally results in poorer fidelity, because it is not guaranteed that

the optimal domain will be found in the class searched. We investigated several methods

based on correlation methods and moments. The results are not definitive, being better in

some features and worse in others as compared with the present scheme.

One weakness of the current compression scheme is the appearance of artifacts. In order to

eliminate these we attempted to postprocess the image by smoothing along the boundaries



of the range tiles. This was successful, often resulting in an even lower rms error. Of the

attempts to remove compression artifacts, this was the most successful. Figure 1 shows a

512x512 pixel 8bpp image of Lena; figure 2 shows a smoothed version the decoded image

of Lena at a compression of 38.7:1; figure 3 shows this same image before smoothing.

Another area of interest is the effect of image size on fidelity and compression. Somewhat

unexpectedly, encoding larger images results in significantly better compression and

fidelity. This observation was uniformly true for all the test images we experimented with.

Figures 2 and 3 can be compared with the images in the preprint to show the large

improvement in compression for a comparable fidelity.

In an effort to improve the ability of the encoding scheme in encoding images, we

investigated two image preprocessing methods. The first, based on Wigner transforms

seems to be initially disappointing. The second method using a wavelet transform, is

potentially useful. We discuss more of the technical details in succeeding sections. Figure

4 shows the result of wavelet transforms applied to an image.

Finally, we are attempting to improve the fidelity of a given tiling by using linear

combinations of domain tiles. Initial results are very encouraging, having greatly reduced

artifacts. Using more than one domain tile significantly reduces the error, but decreases the

overall compression. Without careful classification the search time needed to find even a

moderate approximation to an optimal fit is prohibitive. Our current approach to using

several domain tiles in an encoding is to encode a range optimally and then encode the

resulting error. We are investigating alternative methods which may yield a better

approximation to the optimal linear combination without increasing the computation time

excessively. Figure 5 shows the reconstruction of an image for which the encoding is two

domain tiles to each range tile.

PUBLICATIONS. Dr. Yuval Fisher has submitted a paper for publication in the IEEE

Transactions on Acoustics, Speech and Signal Processing.

ANTICIPATED WORK.

MODIFICATION OF TILING. Work so far has concentrated on tilings which are regular,

rectangular and non-overlapping. This limits the choice of affine transformations and does



not give sufficient flexibility with respect to the local spatial frequency content of the image.

We will investigate ways to choose relatively larger domains where the image is not rapidly

changing and smaller domains where the image is varying rapidly. We will investigate

these methods in conjunction with the Fourier transform.

TRANSFORM METHODS. One efficient way of determining the local frequency content of

the image is through transforms related to the Fourier transform. These, in order of

increasing generality, are the Fourier transform, the Wigner transform, and wave packet
transforms. The Wigner transform is given by the integral

W(f)= e 2xtlp f(x + p) f(x - i p)dp,

and a generalized wave packet transform is given by the integral

Pf (p, q, t) = e -ipq + 2nipx t1/2 O[tl 2 (x - q)] f(x) dp

where O(x) is a generalized Gaussian (see below). A little consideration of the definition of

W(f)(x, 4) will show that this transform gives the local frequency content of the function f

in a neighborhood of x. The expression for Pf (p, q, t) is the inverse Fourier transform

for W(f) if we set t = 1 and ' = f. Details may be found in Folland's 1989 monograph,

pp 56-63 and 142-169.

WAVELET TRANSFORM METHODS. During the next two months we will investigate

relationships between fractal methods and wavelet transforms. The objective of this phase

of the study is to improve the choice of affine iterated function systems. Our rationale for

doing this is that our current image compression scheme does not preserve edges well.
Because edges contribute heavily to human perception of image quality, it is important to

amend this weakness. An appropriate wavelet transform yields a powerful tool to extract

edge information from an image on a variety of scale lengths. Figure 4 shows edges

extracted from a wavelet transform of "Lena" at different scale lengths. Edges correspond



to zero crossings of a wavelet transform of an image and the image may be reconstructed,

by standard methods, from such zero crossings.

Edge information may be used in conjunction with fractal methods in various ways. One

approach is to force the coding method to preserve edges by using a error measure which

weights the edge error more heavily. (Recall that our encoding scheme chooses transforms

on the basis of an integrated error--see the enclosed preprint, page 4.) An alternative

approach is to regard the edges as one-dimensional fractal curves. The edges themselves

may be coded as iterated transforms, using a 1-dimensional analog of the 2-dimensional

method used for images. We will investigate both of these approaches during September

and October.



THEORETICAL INVESTIGATIONS

WORK TO PRESENT. Up to the present we investigated the behavior of generalized

Gaussian functions under affine transformations. A generalized Gaussian is given by a

function:

OA,b,d(x) = exp(x tAx + btx + d),

where x is a vector in the plane, A is a symmetric, negative definite matrix, and b is a fixed

vector. There is also a complex-valued form, in which the entries of A and b are complex

numbers and the real part of A is required to be negative definite. Figures 6 through 9

show sine and cosine components of generalized Gaussians. The set of generalized

Gaussians is preserved under non-singular affine transformations and the orbits (up to a

complex factor) are specified by the cogredience class of A. According to a theorem of

Sylvester, any two real symmetric matrices are cogredient if they have the same rank and

the same signature (Jacobson, 1953). The closure property may be seen by a simple
calculation. If x -- Bx + c is an affine transform A, then O(x) is transformed into

A (OA,b,d)(Bx + c)

= exp( xtB tABx + ctAx + xtAc + btBx + ctAc + btc + d).

The latter function is of the form A',b',d" where A' = B tAB, b = 2ctA + b tB and d'

c Ac + btc + d. Because A is symmetric and negative definite the equation

2ctA+ btB = et

has a unique solution c. Therefore by proper choice of affine transforms, the quadratic

part, x Ax, is specified up to cogredience class, the linear part, btx, is arbitrary and we

are left with a constant factor which cannot be specified.

The objective of our planned work is to clarify the relationship between image coding by
wavelets and image coding by iterated function systems. The invariance of the set of

generalized Gaussian functions under affine transformations indicates that the analog of a



fractal should be a sum of Gaussians which is preserved under an iterated function system.

In particular, if

f Ai,b i ,

then we look for a system of affine transformations {A 1, A2, -. A N) with weights

{w 1, w2 , -. , wN} such that

Nf= wi (A i) )-I M A ib ',d' .

i=

Because we require

OAm'i,b ',d = Oj bibid,

i i

the summations need not be unique. We plan to investigate the problem of finding

decompositions which are linked by systems of affine transformation.

This work has shown some connections between generalized harmonic analysis and the

theory of fractals, in particular through representations of the extended metaplectic

representation and the inhomogeneous symplectic group. The metaplectic representation is

a representation of the symplectic group (the group of 2n x 2n matrices which preserve the

symplectic form [(p, q), (p', q')] = pq'- p'q, on vectors with 2n components. The

symplectic group is generated by matrices

The Acoii g, b

The action is given, up to sign, by



ft 0 A ]f-l ) = (det 1 "'A)f(A-IX)

C I
_ ,.. ) ]f(x)+ =,i,,,,,f(X ,

where , is the Fourier transform. The extended metaplectic representation is a

representation of the semidirect product of the Heisenberg and symplectic groups. The

semidirect product is given as pairs of operators (X, A..5), where X is in the Heisenberg

group and A is in the symplectic group. The group product is given by (X, ..%)(X', A.)
= (X(-.X'), .L'), and the representation is given by co(X, .) = p(X)g(.). The

Heisenberg group acts as follows for X = (p, q, t):

Xf(x) = e2nite21iqx + nip qf(x + p).

Because the product in the Heisenberg group is given by

(p, q, t)(p', q', t') = (p + p', q + q', t + t' + 1 (pq. - q p)),

it can be seen that the extended metaplectic representation contains the usual action of the

affine group.

The inhomogeneous symplectic group is another extension of the symplectic group, which

has a more obvious relationship to the affine group. In this case the semidirect product is

the product of R2n with the symplectic group, and the grouD multiplication is

(w, )(w', ,') = (w + aw', ,,aX).

The representation, as before, is given by co(X, A) = p(X)±(..l). This is a projective

representation, and the extension of this representation by a representation of the circle

group is the extended metaplectic representation.

OTHER CONNECTIONS BETWEEN GENERALIZED GAUSSIANS AND AFFINE

TRANSFORMATIONS. It is easy to show that the set of generalized Gaussians is preserved



under the convolution product. This may be derived from results on the oscillator

semigroup (Folland, page 231) or calculated directly. Furthermore, affine

transformations preserve the convolution product, up to a constant factor. If we write

Y [A ,x0,c] = exp[(x - 76)tA (x - yo) + cl

where, as before the real part of A is negative definite, then

Y [A x0,c ] 
= Y[M tA M, M'(rb - b), c]

where MA(x) = M(x) + b, and

Y [A,x 0 ,c] * Y[B,y 0 ,C] = YI[At(A + B) 1 A + A, :g + y0 , c']

where c' = c - 1/2 log(det(A + B)) and * represents the convolution produce.

This can be used to derive relationships between wavelet transforms and fractal codings.

AFFINE TRANSFORMATIONS AND THETA FUNCTIONS. One definition for the theta

function is given via a generalization of the Fourier transform. We letlx be a vector in Rk

and ix stand for a vector in the space Rk of homogeneous polynomials of degree j in Rk.

There is an obvious inner product in this space, so we can define the nonlinear Fourier

transform

t..., cJ) = f f(jx)exp[ict. 1 x, ..., itJ.jx] dx.

If we take f to be I n, where {In) is the lattice of vectors with integer coordinates in

Rk and J = 2, then we get the function 03(x, z). Furthermore,



f f(M lx)exp[ ic llx, ... , c J'jx] dx=

Det(MY' f f(1 x) exp[ i T 1 M - 1 Ix, ..., ij(M- 1)jx] dx =

Det(M)-I f f(l x ) exp(i [I l]*x l , ..., i VMb' -l)],x J-jx} dx=

Det(M) - I F( [PK'l]*x ,c Ii, J )

where * denotes the adjoint and the pre-subscript denotes the appropriate symmetric

product. This shows that approximate symmetries under the affine group of the function f

can be represented as approximate symmetries of the affine group acting on the nonlinear
Fourier transform. This indicates that searching zero-crossings should be a good way to

find appropriate transforms to code an image.

REFERENCES:

N. Jacobson Abstract Algebra, Volume 1, Van Nostrand, New York, 1965.

R. Folland Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ, 1988.



Figure 1.
The original Lena at size 512 x 512 and 8bpp
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Figure 2.
A smoothed 5 1 2 x 51 2 encoded Lena.
Compression: 38.7
RMS error 8.23 (29.82db signal to noise ratio)
1666 affine transformations.
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Figure 3.
An unsmoothed 512 x 512 encoded Lena.
Compression: 38.7
RMS error 8.81 (29.23db signal to noise ratio)
1666 affine transfomiations.
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Figure 5.
An unsmoothed 256 x 256 Lena encoded using linear combinations
of domain tiles. This images shows almost no boxy artifacts.



Gabor density plot 1
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Figure 6a. Elliptic Gabor function, cosine component
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Gabor density plots 1
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Figure 7a. Parabolic Gabor functioni cosine component
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Figure 71). Par-abolic (raboi- finction,. sine component
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Figure 8a. Liear Gabhor fmictioii, sie component
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Figure 9b. Hyperbolic Gabor function, cosine component
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Figure 81). Hyperbolic Gabor fiinctioni, sine component


